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Laree Elastic-Plastic Deformations of Built-In *1
\Circular Plates under Uniform Load'

Part I - Theoretical Analysis

by H. G. Hopkins2

<1Abstract
Considerable effort has been given to the study of the

behavior of built-in circular plates under uniform load. This
problem is not only of great practical interest butt because of
its relative simplicity, it is also of great significance in

* Istructural theory. The information at present available in the
plastic range is not extensive) and further information would

[ J be of considerable use in design. This fact, together with the
opportunity afforded by digital computing machines for handling
extensive numerical work has stimulated the present study.

The purpose of this paper is to give a treatment of
this problem which is more general than has hitherto been
attempted. Briefly the essential task is to modify the analysis
given by von Karma'n for large elastic deformations to include
plastic deformations. A flow theory for non-hardening Tresca
material is used. The analysis leading to the fundamental
equations is given here. Details of the method of computation,
the numerical results, and comparison with experimental results
will be given in Part II of this paper.

1, Introduction

The behavior of a built-in circular plate under uniform

load is an important technical problem with several applications.

It is also of very considerable significance in the theory of

structures because it is one of the simplest problems, involving

a two-dimensional structural element, that may be formulated.

It is natural therefore that this problom should possess a long

1. The results presented in this paper were obtained in the
course of research sponsored by Watertown Arsenal Laborato-
ries, under Contract DA-19-O20-ORD-2598.

2. Visiting Professor of Applied Mathomatics, Brown University,
Providence, R. I.

17 71, ..:F
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history, and great efforts have been made to analyse various of

,, its aspects with a view to providing design data. The literature

'I on the theory of plates is very extensive. In the following

summary attention will be confined to the contributions of most

Isignificance in relation to the present study. Results applicable

within the elastic range have been described admirably by

'" Timoshenko [1]

A theoretical analysis of this problem leading to a

simple solution is possible only if very restrictive assumptions

are made. This is the situation in the Kirchhoff bending theory

of thin plates which involves the following assumptions: linearj Ielements normal to the undeformed middle surface remain normal

to the deformed middle surface; the transverse displacements are

sufficiently small for extension of the middle surface to be

neglected and simplified curvature formulas to be applied;

Hooke's law is obeyedl and the stresses normal to the middle

surface are, on the average, much smaller than the stresses

parallel to this surface. The solution of the problem subject

to these assumptions is due to Poisson [2] (see also [3]). Now

let the first of Kirchhoff's assumptions be replaced by the less

restrictive one that linear elements normal to the undeformed

middle surface merely remain linear. Thus account is now taken

of transverse shearing deformations. A simple closed expression

is still found for the transverse displacement: this expression

is in fact the exact (three-dimensional) one first given by

* Numbers in square brackets refer to the bibliography at the
end of the paper.

..................... ,.
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jLove [3]. The results show that neglect of transverse shearing

deformation introduces an error in the displacement of order

h2/a where h and a are the plate thickness and radiust respec-

tively. This error is often quite small in practical applications.

In general if the assumptions of the Kirchhoff theory

are not made, then treatment of the problem is more complicated

and numerical methods must be applied directly to the basic

ii1 equations. This is the situation in the analyses due to Foeppl
[41 and von Karman [5 in which the displacements are not suf-

ficiently small for the extension of the middle surface to be

neglected although simplified curvature formulas may still be
used. The theories both lead to two non-linear simultaneous

partial differential equations, but differ in that the former

does not, whereas the latter does, take into adcount bending

action in addition to membrane action. In Foepplts theory the

only boundary conditions that may be imposed are those directly

related to edge displacement. There are no bending stresses,

and accordingly edge rotation must be permitted. Further,

Foepplis theory may be expected on general grounds to approxi-

mate closely von Karmants theory when the displacements are

relatively large. Away from the edge membrane action will pre-

dominate over bending action. In the immediate neighborhood of

the built-in edge the reverse situation applies, and there must

be a narrow boundary layer region across which the transition

occurs. The first detailed numerical treatment of the Foeppl
1 I

equations is due to Hencky [6], and that of the von Karman equa-

tions to Way [7]. It should be noted particularly that the
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Kirchhoff theory is linear whereas the von Karman (and of course

the Foeppl) theory is non-linear. For example the latter theory

predicts that the displacements are ultimately proportional to

pl/3 where p is the uniform intensity of applied load. It is

also known that the neglect of membrane action in the Kirchhoff

theory introduces errors of order w2/h2 where w is (say) the I

* central displacement, and accordingly this theory is certainly

-j inadequate if it predicts w/h> .

The above summary shows that analysis of the problem

within the elastic range is highly satisfactory. It is true of

course that the von Karman theory has not yet been extended to

take account of transverse shearing deformations, but this modi-

Afication is not of great practical importance.

In contrast the analysis of the problem within the

plastic range is very much less satisfactory. So far as the

present writer is aware previously published work is confined

either to bending or membrane action, and even here is by no
Smeans complete, Trifan [8] has given an elastic-plastic bending

theory based upon an empirical approximation to an experimental

stress-strain curve; the predictions of plastic flow and deforma-

tion theories were compared. More recently analyses have been

made in which the elastic deformations are completely neglected.

Thus Hopkins and Prager [9] have determined the transverse load

required to initiate the bending deformation of a plastic-rigid

plate whose material obeys Trescats yield condition and associated

flow rule. This analysis has been extended to other yield con-

A' ditions by Hopkins and Wang [10]o In contrast Hill [11] has

Lhe 

d 
o
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treated the membrane deformation of a plastic-rigid plate whose

material obeys von Mises yield condition and associated flow rule;

linear strain-hardening is included and no restriction is made

on the magnitude of the displacements. This problem has also

been discussed by Ross and Prager [12] for the case of the

Tresca yield condition.

The information at present available in the plastic

range is not therefore very extensive .and further information

would be of considerable use in design. This fact, together with

the opportunity provided by digital computing machines for

handling extensive numerical work, has stimulated the present

study.

The purpose of this paper is to give an analysis of this

problem more general than has hitherto been attemptedand thereby

to provide design data. The material, initially both homogeneous

and isotropic, is taken to be non-hardening. The theory, which

is of the flow (or incremental) type, involves these assumptions:

a) linear elements normal to the undeformed middle surface

remain normal to the deformed middle surface;

b) the displacements are not so large that approximate

curvature formulas cannot be used or that strains can-

not be measured with respect to undeformed elements;

c) elastic strain-rates obey Hookets law, and plastic

strain-rates are given by the von Mises condition;

d) the yield function is that of Tresca, and also coincides

with the plastic potential; and

e) the stresses normal to the middle surface are, on the

with he pasti potntia; an
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average, much smaller than the stresses parallel to

this surface.

It is difficult to justify all of these assumptions, and the

applicability of the numerical results based upon the present

theory must perforce be judged directly through their comparison

with experimental results. Experimental work in progress at

Brown University will provide a basis for such a comparisons

- I Here only brief comment can be made on the assumptions. Experi-

mental work due to Shanley [13] suggests that assumption a)

2 2introduces little error if h /a is sufficiently small. The

reason for the choice of a flow theory is well-known) and, as

already mentioned, basing this theory on the Tresca yield con-

dition is a compromise. Assumptions b) and e) are conventionally

made in thin plate theory.

The analysis leading to the fundamental equations is

given here. Details of the method of computation, the numerical

: .*.:* results, and comparison with experimental results will be given

in Part II of this paper.

2. Notation

The notation used is now described, and for convenience

the plate is taken to be horizontal. Let:

a = plate radius;

h = plate thickness;

p = uniform load intensity;

z = distance (positive below and) normal to middle surface;

r = distance from axis of symmetry;

w = displacement (positive vertiially downwards) of points

in middle surfnce;

*1 - - - - - - - - - -- - - -
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u = outwards radial displacement of points in middle

E = Young s modulus;

V = Poisson's ratio;

D =Eh3/12 (1 - 2) = flexural rigidity;

do = tensile yield stress of material;
I4

d rdt~z =radial, circumferential and transverse stresses;

8 ,e ,s P;. , e p; , I 1e,, P = total, elastic and plasticErl r r , r , ts t ,t z, z , z

strain-rates in the radial, circumferential and

transverse directions;

Mr Mt  = radial and circumferential bending moments;

Nr Nt = radial and circumferential membrane forces; and

Qr = radial transverse shear force.

The basic notation is that used by Timoshenko [1]; see

also Fig. 1. In the plastic range flow theory necessitates the

use of rates-of-change of certain quantities denoted here by

primes, e.g. 8r etc. The material does not exhibit viscosity

effects and accordingly any monotonic increasing quantity asso-

ciated with the progressive deformation of the plate, e.g. p,

is suitable for use as a "time" t. Additional notation is definod

later when first introduced.

3. Analysis4 The problem is one of rotational symmetry, and accordingly

all quantities are functions at most of rtz and t. The essential

task is to modify the analysis of von Karma'n [5] through the
V introduction of stress-rate v. strain-rate equations that are

77-M77
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K valid for plastic deformations.

1) Equilibrium equations

The present theory is a two-dimensional one in that the

overall equations of equilibrium are expressed in terms 6f stress

resultants. The form of these equations (see [l) is of course

independent of the mechanical behavior of the plate:

! r(rNr - Nt = O,(1

*( r Arw N,) + pr =0, (2)(r Qr +  r

U (rMr) - Mt - rQr =0.

It is straightforward to eliminate Q between Eqs. (2) and (3):
r

~ 2
-i ~~rr ) -M + r aw Nr + I pr2 = O.(4

Note that in the general case when p is not constant the last

term in Eq. (4) is OP(r)rdr. Equations (1) and (4) are the

fundamental statical equations. These equations may be differ-

entiated with respect to t to give

r(rNr) - N' = 0, (5)
8 ~*r r( N +Ot +'~

(r ) . + r +AX w N p r 2r N p+  "" r TO

The membrane forces and bending moments are defined by the

equations
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/ = t
t) = (dr,dt)dz, (Mr'Mt) 1 z(dr'dt)dz" (7)

These equations may also be differentiated with respect to t to
;, ! give

(N',N) I (d dt)dz, ( M t1 ) = Zd t)dz. (8)

r 4 hh

2) Stress-rate v. strain-rate relationships

Assumptions a) and b) of our theory lead to the kinemati-

cal relations (see [1])

ar = oau + 1(a )2 .z ' t u  -W 9

ar 2r 2  t r r rt (

and hence

' - F 1p z -2a

r r r t t r rar

A r Assumptions c) and e) lead to

!.,Ere =r - Vdt) E t  = t - dr.l)

t asThe plastic strain-rates s S are defined by the

fo teoequations

IIl
r re t P = t - t (12)

According to assumptions c) and d) the ratios and signs, but not
:,%1the absolute magnitudes$ of the plastic strain-rates are given
~from the following condition, The plastic strain-rate vector

corresponding to any plastic stress state is directed in the sense

of the outwards-drawn normal to the yield locus at this stress

4' state. This condition was proposed originally by von Mises [141:1_ _ __ _ _
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and was later extended by Prager [15] (see also Refs. [16] and
[17]). The present approach is due to Prager. The foregoing

statement pre-supposes that there is a well-defined normal, and

otherwise some degree of arbitrariness within the obvious ex-

tremes is permissible for the direction of this vector (see [18]

and [19]). In general the yield locus is a surface in a three-

dimensional spam in which o 1 t and o are taken as rectangular

cartesian co-ordinates, and the plastic strain-rate vector has

components e P, tP7 e P. Now according to assumption e)[ z < 0 r , and hence the relevant part of the yield locus

jlies in the immediate neighborhood of its intersection with the
plane d = 0. Here Tresca's yield condition is assumed, andi z
hence yielding is possible only if the absolute value of the

shear stress acting parallel to an arbitrarily oriented plane

is equal to the yield stress in shear (j o). In the present

application the yield locus is therefore adequately represented

by the plane curve given by

max. r' 7 dti (r "t)I r 3o. (13

This yield criterion is represented by the hexagon ABCDEF drawn

in the or~dt-plane shown in Fig. 2. The full yield criterion is

a cylinder based on this hexagon with its axis equally inclinod

to the co-ordinate axes. The plastic strain-rate vector

6 1 p st k 81
P does not in general lie in the plane d = O. How-r I pln -

ever the normality of the plastic strain-rate vector eIP) 1P,

a IP to the yield surface implies the normality of the vector
z
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P I 8t  0 to the yield curve, Thus the ratio erP : et  is

LIIeasily found. The strain-rate ez  is not essential to our dis-

cussion but may be found as follows. First from Hookets law

*Es e -(5 + 01(1))
z r

and second from the condition of plastic strain-rate incompressi- J
bility p + p5e" ( - p + CI'

z ~r
,: tp :Ipmabefud Th

and hence all the ratios sr  may be found The

simplicity of the relations governing the plastic strain-rates

is at once evident. Let

f =f(dr 0t; do) (16)

denote the (simplified) yield function$ the sign of f being so
chosen that f < 0 inside the hexagon and f > 0 outside the

hexagon. Note that only the region f < 0 is of physical signifi-

cance. The yield function f is always linear in dr and dt i.e.J

f = adr + Pt + const., and it follows that

rt| r =aX, st  = X' if f =f' 0 where X' >0. (17)

The quantities a and 3 for the non-singular regimes corresponding

to the sides of the hexagon are exhibited in the following table,

Relations(18):

Regime ABBC CD 1 DE EF FA

+d-d0 r 0 dr d0 0-d - 0 o+d-d 0

a 0 -1 1 0+1 +1

+1 +1 -10: 1 S _ _ _ _ _ _ _ _ _ _ _ _ _ _ _7_
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Permissible values of a and for the singular regimes corres-

<1 ponding to the vertices of the hexagon are easily written down$

e.g.

Regime A:5 r = at = 1o -= 9 P= where 0 <Q <i (19)

so that 0 increasing from 0 to 1 corresponds to a continuous

transition between the common terminal point of the regimes FA

and AB, etc., The quantity X = Xt(r,z;t) determines the magnitude

of the plastic strain-rates and its determination is discussed

later.

The relevant stress-rate v. strain-rate relations may

now be expressed in the form

a ' = 1(' 20)
E(r -a) = 

r -vt, E~ t - O) t -Vo r ,

Swhere a and P are now further defined to be zero whenever an
Lii'i:!element undergoes a purely elastic change in strain, L~e,

.4 a =PO if either (i) f < 0, ft 0 or (ii) f = Os ft < 0, (21)

Equations (20) are equivalent to
(1 E( 2  + t- (a + Pv)X }

d =t + VS (P + av)X (22)

Next from Eqs. (10) and (22),

.4A,
-- ,>i1



DA-2598/12  13

E +w ._ za w
dr = Or OrOr Or"i ~(1 - v2 ra

+ v(u - z, a-tr (a +

:~ ru2I (23)o E -. (u - z a )/r + haO'
r t 2 r r .Oh2)r

+ 2 & z ( - (P + ))zOar -2-"
ar

Note that a and P are generally functions of rtz and t, It 
now

N 1 UW L + D-w DX-L + #,3L (a + vvzdzL
Mr=ow fro ror° h) (8 h and(2)ha

ttDI +t [I (PavXdh

S ( V2 ) Or  Or Or h
-=0 h (24)

V -)  r a r ar

and h2a

--h
="D1M~ + - 7 +1 ( + Pv )lzd

Mt r r Or 2 h3 zd ,

-h

Let us now return to the determination of X
s  Throughout

the plastic region ft 0,O i,e,

aI + Pd,11 = 0 .(26)
d r

and hence from Eqs, (23) it follows that X1 is given from

.AI' i , " , ',r -,' . .. . . W..." . . "
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2 2 OU aws z w(a2 + p2+ 2aPv)x' (a + Pv)(-Ou' + -w + W A )
Or 3r Or

+ (p + av)(u - z§XL)/r. (27)
ar

The indefinite integrals (l,z)%'dz are easily written down:

(a + 2afv) rXdz (a + Pv) ((uL + - )z
J ar ar or

a W' z2 )+(P + av)(u'Z aw--),
ar 8r2J i (28)

" Z i(a +-7 +v X 1 +d (uaz2 + PV' )8.u
2 3

ar2  p +2)( a 3

If it is assumed that a and P are, for fixed r and t, piecewise
constant in z then the integrals occurring in Eqs. (24) and (25)

are formally given through use of Eqs. (28). These integrals

involve the position of the elastic-plastic boundary z = z p(r;t)

as an unknown, and this boundary must be found from the condition

that the elastic material immediately adjacent to the plastic-

elastic boundary is just on the point of yielding. Thus Eq*

(26) also applies at the boundary of the elastic region, In

addition the same plastic regime, for fixed r and t, may not

apply throughout a plastic region; in this case the position

of the boundary between adjacent plastic regimes occurs as an

additional unknown but its determination is probably straight-
forward. The foregoing discussion rules out the possibility of

the occurrence of singular plastic regimes. In this case X is

not piecewise constant (see Eq. (19)), and the integrals in
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Eqs. (24) and (25) cannot be formally evaluated as before, These

remarks indicate the difficulties due to the presence of moving

elastic-plastic and plastic-plastic interfaces, and their precise

extent can only be known through the details of the numerical

treatment of the problem.
I

Note that, in general, it is not true that dr and dr

are continuous across elastic-plastic and plastic-plastic inter-

faces*

3), The fundamental equations

The fundamental equations for the problem are now imme-

diately deduced through the elimination of the rates of change

of the stress resultants and stress couples between the statical

equations (5) and (6) and Eqs. (24) and (25): ]
ar I

7F (r ) + Nr " ,2 O +

jh +-E)X'

I + dz + + .. ,dz ,

-h h

i~~~~~~ rw_ = + aw 22-kzz +Gvkzz

I>i

1. r{'8r(29)

+ ui.- (a +P) z '+.E o

r- (l- 2 )

-jh j

r* -s- aIa+PIzz( + av)% Izdze

Equations (29) are two non-linear simultaneous differential
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equations for the determination of the deformation of the plate.

Integration of these equations must proceed in the following way.
SLet the plate be in a known state at time t. Thenw,,N

setc. are all known as functions of r and t, and the position of

the elastic-plastic boundary is known as a function of r, z and

t. Now let t increase by a small amount At. Then the equations

determine the resulting small changes Aw and Au. A difficulty

is that the resulting small change in position of the elastic-

plastic boundary is not known beforehand. The movement cf this

boundary is to be found from the requirement that f is continuous

across the boundary. The state of the plate at time t + At is

now known. This procedure is repeated step-by-step up to any

level of applied load.

In the present problem the boundary conditions are

w' M = u 0 at r = a for t . (30)
8r

So long as an element of the plate undergoes purely

elastic changes in strain Eqs. (29) may be replaced by the von

Karman equations (see [1]),

i ~(r vr ~ +  ( ) + d l(dw)2 07O
,~(31)

re)> Eh dw dAu +ld~
T1 +

4t

'r dr ad
dr L _V) Ur d

• .. . .. . ....,7J



DA-2 598/12 17

4). The development of plasticity

It is obvious that the major difficulty in the integra-

tion of Eqs. (26) is due to the presence of moving elastic-plastic

boundaries. The computational task is eased by the fact that it

is possible to make some qualitative remarks about the develop-

ment of plasticity in the plate.

Attention is confined here to the case of a moderately

thick plate for which the various types of action occur in this

ordert elastic bending, plastic bending, elastic membrane, and

plastic membrane, This is not to say that all elements of the

plate experience all types of action.

, The known solution of the problem when there is elastic

bending action shows that plastic deformation occurs first at

the edge of the plate [1]. Since

r p t/v =  pa 2/h2  (r a, z + h), (3-)

the corresponding representative stress points move out along

OG and OH (see Fig, 2), respectively) with increasing p. The

yield limit is first reached at G and H when

P/d 0 =  h2/a 2 = (pd ) (33)

and then 2h2

a d(r = 0). (34)

As p/d increases beyond (p/d0 ) ) plastic regions must spread

inwards from points r = a, z = + 1 h. The theory for elastic

bending action shows that, for fixed z,l the extreme values of

dr and 0t occur at the plate edge and center. At the center of

A 77-
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A

the plate,

dr =dt = (1+ v) 3pa2/h2  (r 0, z =+ h), (3)

and the corresponding representative stress points move out along

OA and OD, respectively. However the points A and D are not

reached before the points G and H are reached.

The discussion is now based upon general physical argu-

ments, and only qualitative conclusions may be reached. The

spreading inwards of the edge plastic regions results in a rela-

tive weakening of the plate, and therefore accelerates theII
initiation of central plastic regions. It is now clear from Eq

(35) that the spreading outwards of plastic regions from the

points r = 09 z = + I h must in fact occur quite soon and certain-
2ly beforeP/d -1 +Tp (Pi (36)

Pt,

Yielding at the plate center will occur as soon as the points A

and D are reached. Note that the center is always an isotropic

stress point.

In proceeding we shall first recall a result of Ref. [9]

based upon plastic-rigid bending theory'. This result is that

hinge circles occur at the center and edge of the plate. In the

present context it is immediately concluded that) until membrane

action is significant, the tendency must be for the stress points

to approximate this situation and also to be generally consistent
with the plastic moment distributions found in Ref. [9). Thus

for r = O9a the representative stress points must tend towards
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AD or CF according as z > O respectively. Moreover as the

edge and central plastic regions grow the plastic stress points

may be expected to occupy increasing parts of regimes AB, CB

. and DE, FE.

As p continues to increase the increasing importance of

membrane action must disturb the symmetry of the plastic regimes

about the center of the hexagon. The development of asymmetry

- iis accompanied by unloading followed by reversed loading of

-j plate elements. Such effects will spread out across outer

annular and central regions in the lower and upper halves of

the plate, respectively. Now when the displacements are quite

large, membrane action must predominate in regions away from the

plate edge but bending action will always predominate at the

I plate edgee Ultimately there must be a narrow boundary layer

, region at the plate edge across which there is a sharp transition

from bending to membrane action.

.. It may be noted that the growth of plastic regions when

the plate is simply-supported has been studied in detail by

Sokolovsky [20]. This analysis is confined to elastic-plastic

membrane action, and assumptions a), b) and e) are made. Al-

though the inadmissible Hencky equations for the von Mises yield

condition are used, it seems probable that the results would

closely approximate those determined by the present analysis.

Note finally that probably the most significant limiting

factor governing the applicability of the analysis will be the

onset of high shear stresses in elastic regions which are neglect-

ed here.
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'I 5). Non-dimensional notation

It is necessary to introduce non-dimensional quantities

so that the basic equations may be written in a form more

appropriate for computation.

Note first that typical lengths parallel and normal to

the plane of the plate are a and h, respectively. Further it

is envisaged in the present work that h and the central deflec-

tion at the onset of yielding are of the same order. Thus a

second typical length normal to the plane of the plate is

Ti2 2
d = a h o/48D (37)

(see Eq. 34). It is also supposed here that Out/Or and w/ar X

awt/Or are of the same order. These considerations suggest the

introduction of the following non-dimensional notation:

2p = r/a, =z/h; W = w/d. U = au/d. (38)

The uniform load p is most conveniently expressed as a multiple

of 4 h2 d (see Eq. 33), i.e. let t be defined by
a

2
h (39)

so that according to bending theory the plate will first yield

when t 1.

The fundamental equations (29) and boundary conditions

(30) now take the form:

I,
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o, { aw aw, + 0 1
Op ap p T a 'p T

(a + _v)A'd + i (P + av)A'd,

22
PoW)l 12 L + nw) +12 ' - 32 p

3p h a aprp 2 pF 1"

a f
p ap (a + POA'Cd (P + av)A C Id .

-

=W p _ 0 at p 1 for t > 0(

I ~where OP-4 a2 + + - 3 + v f -11a +3v)A
Lapp p ap p

2 2 8W, 2

(a + P ++ 2av) acvJU~ +~ AW h' -
~~1L - dr

A' having replaced X',

A a2  (

Note also that

2 9pl~)(au + aw dw t.
= h) - ) OW LW_.a

(h) 82W1  +

d~ p (2 +a)].J
Q+5

I
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It is apparent now from the structure of the equations

that the geometrical and physical characteristics of the plate

enter only through the non-dimensional parameters

2

d 1 v2 0a

b> (h-6)

t~3pa 2
t 3 pa

and of course Poisson's ratio V. The procedure is therefore

4to integrate the equations for a range of values of these

parameters.

Note finally that the neglect of shear deformation

involves an error of order h2/a and that the use of approxi-

mate curvature formulas involves an error of order w2/a
2 .

4-
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